[ad_1]
Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the earth system. Science 363, eaau8299 (2019).
Google Scholar
European Commission. Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union L275, 38–40 (2011).
Kaegi, R. et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156, 233–239 (2008).
Google Scholar
Praetorius, A. et al. Single-particle multi-element fingerprinting (SpMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci. Nano 4, 307–314 (2017).
Google Scholar
Flores, K. et al. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 56, 1–26 (2021).
Google Scholar
Mehrabi, K., Gunther, D. & Gundlach-Graham, A. Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices. Environ. Sci. Nano 6, 3349–3358 (2019).
Google Scholar
Mehrabi, K., Kaegi, R., Gunther, D. & Gundlach-Graham, A. Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. Environ. Sci. Nano 8, 1211–1225 (2021).
Google Scholar
Loosli, F. et al. Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Environ. Sci. Nano 6, 763–777 (2019).
Google Scholar
Wang, J., Nabi, M. M., Erfani, M., Goharian, E. & Baalousha, M. Identification and quantification of anthropogenic nanomaterials in urban rain and runoff using single particle-inductively coupled plasma-time of flight-mass spectrometry. Environ. Sci. Nano 9, 714–729 (2022).
Google Scholar
von der Kammer, F. et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 31, 32–49 (2012).
Google Scholar
Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Exposure and possible risks of engineered nanomaterials in the environment—current knowledge and directions for the future. Rev. Geophys. 58, e2020RG000710 (2020).
Google Scholar
Bland, G. D., Battifarano, M., Pradas del Real, A. E., Sarret, G. & Lowry, G. V. Distinguishing engineered TiO2 nanomaterials from natural Ti nanomaterials in soil using SpICP-TOFMS and machine learning. Environ. Sci. Technol. 56, 2990–3001 (2022).
Google Scholar
Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D. & Biswas, P. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).
Google Scholar
Gottschalk, F., Sonderer, T., Scholz, R. W. & Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009).
Google Scholar
Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692 (2013).
Google Scholar
Song, R., Qin, Y., Suh, S. & Keller, A. A. Dynamic model for the stocks and release flows of engineered nanomaterials. Environ. Sci. Technol. 51, 12424–12433 (2017).
Google Scholar
Sun, T. Y. et al. Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 51, 2854–2863 (2017).
Google Scholar
Giese, B. et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 8, 1565 (2018).
Google Scholar
Sun, T. Y., Bornhöft, N. A., Hungerbühler, K. & Nowack, B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 50, 4701–4711 (2016).
Google Scholar
Zheng, Y., Mutzner, L., Ort, C., Kaegi, R. & Gottschalk, F. Modelling engineered nanomaterials in wet-weather discharges. NanoImpact 16, 100188 (2019).
Google Scholar
European Research Project: GUIDEnano. https://www.guidenano.eu/ (accessed 18 October 2022).
European Research Project (H2020): GRACIOUS. https://cordis.europa.eu/project/id/760840/de (accessed 18 October 2022).
European Research Project (8FP7): ENPRA. https://cordis.europa.eu/project/id/228789/de (accessed 18 October 2022).
European Research Project (H2020): RiskGONE. https://riskgone.wp.nilu.no/ (accessed 19 December 2022).
Isigonis, P. et al. Risk governance of nanomaterials: review of criteria and tools for risk communication, evaluation, and mitigation. Nanomaterials (Basel) 9, 696 (2019).
Google Scholar
Read, S. A. K., Kass, G. S., Sutcliffe, H. R. & Hankin, S. M. Foresight study on the risk governance of new technologies: the case of nanotechnology. Risk Anal. 36, 1006–1024 (2016).
Google Scholar
Walser, T. et al. Exposure to engineered nanoparticles: model and measurements for accident situations in laboratories. Sci. Total Environ. 420, 119–126 (2012).
Google Scholar
Nowack, B., Mueller, N. C., Krug, H. F. & Wick, P. How to consider engineered nanomaterials in major accident regulations. Environ. Sci. Eur. 26, 2 (2014).
Google Scholar
Kim, K. H., Kim, J. B., Ji, J. H., Lee, S. B. & Bae, G. N. Nanoparticle formation in a chemical storage room as a new incidental nanoaerosol source at a nanomaterial workplace. J. Hazard. Mater. 298, 36–45 (2015).
Google Scholar
Pilou, M. et al. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation. Int. J. Occup. Environ. Health 22, 249–258 (2016).
Google Scholar
Delvosalle, C., Fiévez, C. & Pipart, A. ARAMIS project: reference accident scenarios definition in Seveso establishment. J. Risk Res. 9, 583–600 (2006).
Google Scholar
Debray, B. et al. in Probabilistic Safety Assessment and Management (eds Spitzer, C. et al.) 358–363 (Springer, 2004); https://doi.org/10.1007/978-0-85729-410-4_58
Tixier, J., Dusserre, G., Salvi, O. & Gaston, D. Review of 62 risk analysis methodologies of industrial plants. J. Loss Prev. Process Ind. 15, 291–303 (2002).
Google Scholar
Khan, F., Rathnayaka, S. & Ahmed, S. Methods and models in process safety and risk management: past, present and future. Process Saf. Environ. Prot. 98, 116–147 (2015).
Google Scholar
Bottomley, P. D. W. et al. Severe accident research at the Transuranium Institute Karlsruhe: a review of past experience and its application to future challenges. Ann. Nucl. Energy 65, 345–356 (2014).
Google Scholar
ARIA. La référence du retour d’expérience sur accidents technologiques. https://www.aria.developpement-durable.gouv.fr/ (accessed 18 October 2022).
Debray, B., Lacome, J.-M., Vignes, A., Gottschalk, F. Catalogue of Potential Accidental Releases and Accidental Release Model NanoFASE Project Deliverable D4.4 (NanoFASE, 2019); http://nanofase.eu/documents/reports
Safety of Nuclear Power Reactors (Light Water-Cooled) and Related Facilities WASH-1250 (US Atomic Energy Commission, 1973).
Ha-Duong, M. & Journé, V. Calculating nuclear accident probabilities from empirical frequencies. Environ. Syst. Decis. 34, 249–258 (2014).
Google Scholar
Hendren, C. O. et al. Bridging nanoEHS research efforts. NanoEHS Scrimmage. US–EU.org (2016); https://us-eu.org/wp-content/uploads/2016/06/Hendren_Scrimmage_Intro_V3.pdf
Maynard, A. D. & Aitken, R. J. ‘Safe handling of nanotechnology’ ten years on. Nat. Nanotech 11, 998–1000 (2016).
Google Scholar
Syberg, K. & Hansen, S. F. Environmental risk assessment of chemicals and nanomaterials—the best foundation for regulatory decision-making? Sci. Total Environ. 541, 784–794 (2016).
Google Scholar
Krug, H. F. Nanosafety research—are we on the right track? Angew. Chem. Int. Ed. 53, 12304–12319 (2014).
Google Scholar
Déclaration des substances à l’état nanoparticulaire. R-Nano.fr https://www.r-nano.fr/ (accessed 18 October 2022).
Risks. Lloyd’s Emerging Risks Team Report (Lloyd’s, 2007).
R: A Language and Environment for Statistical Computing (R Core Team, 2018).
[ad_2]